Enriched simplicial presheaves and the motivic homotopy category
نویسندگان
چکیده
منابع مشابه
A Simplicial Description of the Homotopy Category of Simplicial Groupoids
In this paper we use Quillen’s model structure given by Dwyer-Kan for the category of simplicial groupoids (with discrete object of objects) to describe in this category, in the simplicial language, the fundamental homotopy theoretical constructions of path and cylinder objects. We then characterize the associated left and right homotopy relations in terms of simplicial identities and give a si...
متن کاملHypercovers and simplicial presheaves
We use hypercovers to study the homotopy theory of simplicial presheaves. The main result says that model structures for simplicial presheaves involving local weak equivalences can be constructed by localizing at the hypercovers. One consequence is that the fibrant objects can be explicitly described in terms of a hypercover descent condition. These ideas are central to constructing realization...
متن کاملCategorical Homotopy Theory
This paper is an exposition of the ideas and methods of Cisinksi, in the context of A-presheaves on a small Grothendieck site, where A is an arbitrary test category in the sense of Grothendieck. The homotopy theory for the category of simplicial presheaves and each of its localizations can be modelled by A-presheaves in the sense that there is a corresponding model structure for A-presheaves wi...
متن کاملWeak Equivalences of Simplicial Presheaves
Weak equivalences of simplicial presheaves are usually defined in terms of sheaves of homotopy groups. We give another characterization using relative-homotopy-liftings, and develop the tools necessary to prove that this agrees with the usual definition. From our lifting criteria we are able to prove some foundational (but new) results about the local homotopy theory of simplicial presheaves.
متن کاملSemi-simplicial Types in Logic-enriched Homotopy Type Theory
The problem of defining Semi-Simplicial Types (SSTs) in Homotopy Type Theory (HoTT) has been recognized as important during the Year of Univalent Foundations at the Institute of Advanced Study [14]. According to the interpretation of HoTT in Quillen model categories [5], SSTs are type-theoretic versions of Reedy fibrant semi-simplicial objects in a model category and simplicial and semi-simplic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2011
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2010.10.002